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1. La rinascita del rigore matematico nell’800

Quando si tenti di formulare schematicamente le differenze che intercorrono fra
la matematica del secolo XVIII e quella del secolo XIX, non e difficile avvedersi
del fatto che I'accento non va posto tanto sulla pur innegabile e, anzi, talora
straordinaria novita di alcuni oggetti e contenuti dell’'indagine matematica, quanto
piuttosto sulle modalita di quest’ultima.

Cio che infatti meglio contraddistingue la matematica ottocentesca da quella del
secolo di Eulero e di Lagrange ¢ il graduale, ma sicuro, affermarsi in essa di un
atteggiamento rigoristico che si manifesta attraverso I’emergere progressivo di una
esigenza profonda di chiarezza e di determinazione dei propri concetti e dei propri
metodi, e poi, via via, di fondazione delle varie discipline e infine, piu in generale,
di tutta la matematica.

Non e facile cogliere e seguire, all’interno del complesso e articolato processo reale
attraverso cui matura il nuovo livello di consapevolezza critica, i temi e le di-
rettrici fondamentali di movimento; tuttavia - sia pur con una certa inevitabile
semplificazione - pare possibile individuare due grandi linee di svolgimento.
Queste approderanno alla fine del secolo a due prospettive generali, capaci, ognuna
per proprio conto, di fornire una base unitaria all’intero edificio della matematica;
tuttavia va rilevato come soltanto agli inizi del nostro secolo queste due linee
di svolgimento raggiungano compiuta coscienza di questa loro capacita e dunque
scoprano anche, fra l'altro, le relative incompatibilita. Nel corso dell’Ottocento,
infatti, esse procedono per larga parte in maniera del tutto indipendente e taluni
loro contrasti di fondo non sono che parzialmente avvertiti quando non del tutto
ignorati. Cio e dovuto anche al fatto che esse sono legate, in quel tempo, a mondi
e temi matematici diversi: a quelli degli analisti I'una, a quelli dei geometri e degli
algebristi ’altra.

*Questo volume consiste di una parte introduttiva, trascritta in queste pagine, e della
traduzione di articoli di, nell’ordine del libro, Bertrand Russell, Jaques Herbrand, Johann von
Neumann, Kurt Godel, Arend Heyting e Alfred Tarski. A questi articoli si riferiscono le succes-
sive note a pié di pagina.



2. Il riduzionismo ottocentesco

Una di queste grandi linee, quella che chiameremo del “riduzionismo ottocen-
tesco”, attraversa alcune fasi fondamentali. La prima di queste puo farsi iniziare
alla svolta del secolo allorché gli studi del danese Kaspar Wessel (1745-1818),
dello svizzero Jean Robert Argand (1768-1822) e del grande tedesco Karl Friedrich
Gauss (1777-1855), fornendo una interpretazione geometrica dei numeri comples-
si come punti del piano, iniziano quel processo di riconduzione della teoria dei
numeri complessi a quella dei reali che, per quanto attiene specificamente al con-
cetto di numero complesso, si concludera nel 1843 con la “moderna” definizione
dei complessi come coppie di reali ad opera dell’irlandese Rowan Hamilton (1805-
1865), ma nel quale un ruolo di primo piano tocchera al francese Louis Augustin
Cauchy (1789-1857) e al suo reimpianto della teoria delle funzioni di variabile
complessa. La seconda fase inizia con lo stesso Cauchy e consiste nella determi-
nazione logicamente soddisfacente dei fondamentali concetti dell’analisi: limite,
convergenza, continuita, derivata, integrale etc. Contributi importanti a questa
seconda fase furono recati dal norvegese Nieis Abel (1802-1829), dal boemo Bern-
hard Bolzano (1781-1848) e soprattutto dal tedesco Karl Weierstrass (1815-1897).
La terza fase, che viene usualmente detta della “aritmetizzazione dell’analisi”,
e che ¢ caratterizzata dalla riconduzione della teoria dei numeri reali a quella
dei numeri naturali, e iniziata dallo stesso Weierstrass e culmina con la pubbli-
cazione simultanea nel 1872 delle “classiche” fondazioni del sistema dei reali dei
tedeschi Georg Cantor (1845-1918) e Richard Dedekind (1831-1916). In questa
fase dell’aritmetizzazione dell’analisi comincia fra ’altro a emergere una contrap-
posizione che nel nostro secolo avra, come diremo a suo tempo, sviluppi allora
inimmaginabili. Alla riduzione di Weierstrass, Cantor, Dedekind e altri, che usa-
no pitt o meno esplicitamente il concetto di funzione o di insieme qualsiasi, si
contrappone quella del tedesco Leopold Kronecker (1823-1891) il cui obiettivo
fondamentale e invece proprio la eliminazione dalla matematica di questi concetti.
L’aritmetizzazione dell’analisi e seguita da due contemporanei sviluppi. Da un lato
il tedesco Gottlob Frege (1848-1925) porta alle estreme conseguenze il processo
riduttivo applicato ai sistemi numerici tradizionali riuscendo a riportare il concetto
di numero naturale a una combinazione di concetti puramente logici (a questa
fase del “riduzionismo” alla quale, sia pure in modo peculiare, partecipo anche
Dedekind, si ¢ soliti dare il nome di “logicizzazione dell’aritmetica”!); dall’altro,
Cantor inizia ’edificazione della sua gigantesca teoria dei numeri transfiniti della
quale, esempio forse unico nella storia del pensiero matematico, riuscira, partendo

'La logicizzazione dell’aritmetica viene illustrata nella lettura: B. RUSSELL, Introduzione
alla filosofia della matematica.



praticamente dal nulla, a costruire gran parte del I’edificio spalancando, fra ’altro,
le porte a una matematica di una generalita e di una potenza unificatrice che non
trova analogie nell’intera storia del pensiero umano.

3. I caratteri fondamentali del riduzionismo

Senza tentare di entrare meglio nel grandioso lavoro di riduzione operato, limi-
tiamoci a richiamare alcuni dei tratti essenziali che caratterizzarono nel loro com-
plesso le indagini dei pensatori che si mossero nel solco di questa tradizione e che
costituirono, al di la delle pur grandi differenze, i momenti comuni essenziali delle
loro concezioni filosofico-matematiche.

In primo luogo va detto che il processo di riduzione fu concepito in ogni sua
fase come un processo di analisi contenutisticamente determinata. I residui del
lavoro riduttivo potevano certo, a loro volta, essere oggetto di ulteriore analisi ma
mai, in nessuno stadio, essi furono concepiti come il possibile risultato di mere
postulazioni.

In secondo luogo ¢ importante notare come il processo riduttivo venisse concepito
in sostanza come una graduale espulsione dell’intuizione dalla matematica; cio,
pero, non nel senso che si ritenessero le asserzioni o i concetti della matematica
come dei costrutti verbali privi di contenuto, ma in quanto si riteneva l'intuizione
incapace di cogliere 'intero contenuto razionale dei concetti (e quindi anche, fra
I'altro, responsabile di errori e fraintendimenti).

Da ultimo va rilevato come, in ogni suo stadio, il procedimento riduttivo non mise
mai in dubbio la validita della logica che sovrintendeva ad esso; se si eccettua la
fase piu schiettamente logicista, tale logica era anzi considerata talmente piana e
pacifica che non si sentiva nemmeno il bisogno di esplicitarla.

4. La concezione tradizionale dell’assiomatica

L’altra grande linea di sviluppo che percorre il pensiero matematico e filosofico-
matematico dell’Ottocento ¢ connessa al problema della organizzazione assioma-
tica. Punto d’approdo di questa linea di sviluppo sara un modo radicalmente
nuovo di concepire il senso, la portata e la maniera stessa di articolarsi del metodo
assiomatico.

Molto sommariamente, I'idea di organizzazione assiomatica di una disciplina mate-
matica, cosi come la si puo ritrovare formulata o applicata nelle opere di Aristotele
o di Euclide, di Pascal o di Newton, € questa: costituenti fondamentali di una teo-
ria sono i concetti che categorizzano la sfera di esperienza oggetto della teoria, e le
proposizioni che di quella sfera di esperienza descrivono il comportamento. Non



ogni concetto risulta immediatamente intelligibile. Se si riesce a definirlo logi-
camente in termini di altri concetti, allora si e riusciti a ricondurre il problema
della sua intelligibilita a quello della intelligibilita dei concetti mediante i quali lo
si € definito. Analogamente, non ogni proposizione vera appare immediatamente
tale. Se la si dimostra logicamente a partire da altre, allora si e ricondotto il
problema della sua verita a quello della verita delle proposizioni tramite le quali
la si ¢ dimostrata. L’ideale dell’organizzazione assiomatica di una teoria con-
siste nel rinvenire un certo numero, possibilmente ristretto, di concetti ai quali
ogni altro concetto possa venir ricondotto tramite definizioni, e un certo numero,
possibilmente piccolo, di proposizioni vere alle quali ogni altra proposizione vera
della teoria possa venir ricondotta tramite dimostrazionsi. L’intelligibilita dei con-
cetti ultimi, cosi come la verita delle proposizioni ultime (i cosiddetti assiomi),
dev’essere immediata. E la dimensione extra-logica dell’intuizione che fornisce il
fondamento primario della costruzione; le dimensioni logiche della definizione e
della dimostrazione hanno essenzialmente il compito di trasmettere I'evidenza su
per tutto l'edificio.

5. La crisi dell’euclideismo

A trasformare radicalmente questa prospettiva concorsero in maniera determi-
nante le vicende della geometria elementare. Dopo oltre duemila anni di dubbi e
di tentennamenti, dopo innumeri tentativi di trovare una dimostrazione per esso,
tre uomini, il gia ricordato Gauss, il russo Nicolai Ivanovic Lobacewski (1793-1856)
e l'ungherese Janos Boiyal (1802-1860) pitt o meno nello stesso tempo, osano ri-
nunciare al postulato che per un punto esterno a una retta data passa una sola
parallela alla retta data, e iniziano la costruzione di una geometria in cui tale
postulato non vale pit. Le loro idee tardano parecchio a trovare adeguata eco nel
mondo dei matematici, ma, a partire dagli anni sessanta, esse divengono patrimo-
nio comune e oggetto di sempre piu ricche e vaste generalizzazioni, in connessione
anche con gli enormi sviluppi avuti nel frattempo dalla geometria proiettiva che
dai tempi “eroici” di Jean-Victor Poncelet (1788-1867) attraverso l'opera di nu-
merose figure di grande rilievo (principalmente francesi e tedesche) era venuta
trasformandosi sino a divenire nelle mani dell’inglese Arthur Cayley (1821-1895) e
del tedesco Felix Klein (1849-1925) uno strumento concettuale di grande generalita
e flessibilita.

Il colpo recato dalla scoperta di queste possibilita alternative di costruire la geo-
metria elementare alla ingenua fiducia nella intuizione come capace di dare fonda-
mento e giustiticazione all’intero edificio matematico della geometria, fu enorme.
Lo stesso concetto di veritd matematica fu messo in aperta crisi. Ando cosi,



fra I’altro, maturando, sia pur faticosamente, una distinzione fra una geometria
matematica e una geometria fisica, fra una geometria, cioe, che viene liberamente
sviluppando le sue proposizioni a partire da altre la cui significativita specifica
appare sempre meno rilevante, e una geometria intesa come ramo della fisica che
cerca, non dissimilmente da ogni altro ramo della fisica di descrivere e organizzare
razionalmente un certo ambito del I’esperienza sensibile, in particolare quello della
esperienza spaziale. Il problema della “verita” delle proposizioni geometriche si
sdoppia quindi a poco a poco in un problema di “verita matematica” che tendera
sempre piu a identificare questa con l’essere conseguenza logica degli assiomi (salvo
il proporre a sua volta la questione, tanto importante nel seguito di quel secolo e
ancor piu nel nostro, di sapere che cosa questo “essere conseguenza logica” possa
veramente voler dire) e in un problema di “verita empirica” che negli sviluppi
della epistemologia successiva finira con il confluire nel pit generale problema del
rapporto fra il mondo dell’esperienza sensibile e le proposizioni che pretendono di
descriverlo.

6. Le equazioni algebriche

Accanto alla geometria, I’algebra ha un ruolo di grande rilievo nella “rivoluzione
assiomatica”. Due sono i fenomeni che caratterizzano gli sviluppi di questa disci-
plina nel secolo scorso e in particolare nella sua prima meta.

Da un lato, la teoria delle equazioni algebriche, che aveva costituito per secoli il
tema precipuo per non dire esclusivo dell’indagine algebrica, ottiene una sorta di
sistemazione e organizzazione per certi versi definitiva; dall’altro, questa stessa
problematica passa in certo modo in secondo piano e l'orizzonte della tematica
algebrica subisce un radicale ampliamento.

E opportuno osservare che, contrariamente a quel che si potrebbe supporre, il
secondo fenomeno non e una conseguenza del primo. Almeno entro certi limiti,
infatti, i due processi si svolgono indipendentemente 1'uno dall’altro. Diversi an-
che gli ambienti culturali in cui hanno luogo: essenzialmente francese il primo
fenomeno, soprattutto britannico il secondo. Solo piu tardi questi due processi
sapranno, per cosi dire, ricongiungersi, contribuendo, accanto ad altri fattori che
dobbiamo necessariamente trascurare, a dare all’algebra il nuovo volto che essa
assume nella seconda meta dell’Ottocento.

Protagonista del primo fenomeno fu il francese Evariste Galois (1811-1832), morto
giovanissimo in un oscuro duello. Le sue geniali intuizioni non furono in realta
conosciute che dopo il 1846 e anche allora faticarono non poco a farsi veramente
comprendere e apprezzare. Solo verso la fine degli anni sessanta, soprattutto
per merito del francese Camille Jordan (1838-1922), si puo dire che 1'acquisizione



dell’eredita di Galois € completata.

Cio che Galois, sviluppando talune idee di Lagrange, del gia ricordato Abel
e dell'italiano Paolo Ruffini (1765-1822), riusci ad ottenere, fu di associare a
ogni equazione algebrica un sistema di permutazioni (il “gruppo di Galois del-
I'equazione”) il quale e legato alla equazione in modo tale che questa ¢ risolubile
mediante radicali se e solo se quello soddisfa una certa condizione strutturale.
La domanda che era venuta via via maturando e precisandosi nel corso di tre
secoli aveva finalmente una risposta. Di piu, quella risposta era stata ottenuta
ricorrendo a punti di vista strutturali che, per la loro generalita, cominceranno
ben presto a essere coltivati e studiati a prescindere dal particolare caso, quello
dei gruppi di sostituzioni (anzi di quei particolari gruppi di sostituzioni che sono
i gruppi di Galois di un’equazione), nel quale essi erano sorti e per il quale essi
erano stati elaborati.

7. La nascita dell’algebra astratta

L’altro fenomeno passa attraverso una serie di tappe che molto, ma molto schemati-
camente, possono venir cosi indicate.

Si comincia con l'isolare le proprieta strutturali fondamentali delle operazioni ar-
itmetiche (commutativita associativita, distributivita etc.) e le si colloca alla
base di uno sviluppo essenzialmente algoritmico-deduttivo di quella che venne
allora chiamata “algebra aritmetica”. Attraverso un nebuloso “principio di per-
manenza delle forme equivalenti” si estendono le leggi dell’ “algebra aritmetica”
a una “algebra simbolica” che viene concepita in qualche modo come un’algebra
delle grandezze in generale. Questi due primi passi sono essenzialmente opera dell
inglese George Peacock (1791-1858). La terza tappa ¢ costituita dalla scoperta di
certi enti (i quaternioni) che, pur avendo ragionevoli titoli per essere considerati
delle grandezze, non si comportano sempre come vorrebbe ’algebra simbolica (in
particolare violano la legge di commutativita della moltiplicazione). Questo passo,
il cui merito spetta al gia ricordato William Rowan Hamilton, e stato talvolta,
e non del tutto impropriamente, paragonato alla scoperta dell’indipendenza del
postulato delle parallele. Un quarto momento puo essere indicato nella graduale
emancipazione del concetto di “algebra di un sistema di grandezze” dall’idea uni-
taria teorizzata da Peacock, attraverso la creazione, accanto a quella dei quater-
nioni, di algebre ancor piu “aberranti”, come quella dei vettori, delle matrici etc.
Fra i molti nomi ai quali e legato questo sviluppo ricordiamo soltanto quelli del
tedesco Hermann Grassmann (1809-1877) e del gia nominato Arthur Cayley. La
quinta tappa decisiva va rinvenuta nell’acquisizione dell’idea che una trattazione
algebrica, ossia una trattazione che consista nello sviluppo puramente formale di



certe asserzioni-base circa le operazioni in discussione, non sia possibile soltanto di
“orandezze” ma anche di enti del tutto diversi, per esempio: proposizioni, classi,
trasformazioni di un insieme. Immenso fu in questa direzione il contributo recato
dall’irlandese George Boole (1815-1864) con la sua creazione di un’algebra della
logica.

8. La rivoluzione assiomatica

Gli sviluppi della geometria e dell’algebra, ai quali abbiamo accennato, concorsero
in misura determinante a modificare radicalmente la prospettiva assiomatica.

La funzione fondante dell’intuizione e stata dissolta; la garanzia della legittimita
razionale del sistema dev’essere cercata altrove, in particolare - si comincia a dire
- in una non-contraddittorieta degli assiomi; che cosa trasmettano le definizioni
e le dimostrazioni non ¢ piu ben chiaro, ma l'algebra astratta, che sta sempre
meglio imparando a trattare unitariamente sistemi eterogenei di enti, fa gradual-
mente intravvedere la possibilita di concepire le operazioni logiche del definire e
del dimostrare come quelle operazioni capaci di generare i costrutti concettuali
possibili e le proposizioni vere in ogni possibile sistema di enti che si trovi a
verificare gli assiomi. Contemporaneamente, proprio questa idea, unitamente al
graduale dissolversi del concetto tradizionale di verita matematica, sposta radical-
mente il rapporto fra assiomi e teoremi, fra concetti primitivi e concetti derivati.
Se prima assiomi e concetti primitivi erano in un certo senso solo il residuo ul-
timo di un lavoro definitorio e dimostrativo che veniva concepito essenzialmente
come un lavoro riduttivo, adesso assiomi e relativi concetti, a significato larga-
mente indeterminato, diventano sempre piu il vero punto di partenza, non soltanto
logico ma anche epistemologico, del lavoro del matematico; la funzione creativa
dell’organizzazione assiomatica viene sempre piu esaltata Punto d’arrivo di questa
rivoluzione assiomatica operatasi nel corso del secolo sono da un lato i Fondament:
della Geometria del tedesco David. Hilbert (1862-1943), e dall’altro i lavori sui
fondamenti dell’aritmetica e della geometria che vengono svolti nella scuola del
torinese Giuseppe Peano (1858-1932).

9. Il programma logicista di B. Russell

Gia abbiamo accennato al fatto che ¢ solo all’inizio di questo secolo che il filone
“riduzionista” assume, attraverso le idee e il lavoro del filosofo e matematico in-
glese Bertrand Russell (1872-1970), quei caratteri di globalita e di onmcompren-
sivita che solo implicitamente erano presenti nelle idee e nelle opere dei grandi
maestri dell Ottocento.



Frege, per esempio, si era soprattutto preoccupato di ridurre alla logica la teoria
dei numeri e, pur senza trascurarne completamente I’opera, non aveva certo colto
tutta la ricchezza e tutta la potenza delle nuove intuizioni di Cantor; questi per
parte sua, non era mai riuscito a superare una certa diffidenza verso le dimensioni
piu schiettamente logiche della teorizzazione di Frege e aveva finito per ignorarne
i fondamentali contributi. Nemmeno Dedekind, che pure per tanti versi occupava
una posizione intermedia fra i due, era riuscito completamente a vincere certe sue
titubanze e perplessita.

Russell conosceva bene 'opera di Cantor e dopo che il fortunato incontro con
Peano al Congresso di Parigi del 1900 lo aveva messo in contatto con le grandi
possibilita contenute nel patrimonio logico elaborato dalla scuola torinese, affronto
in tutta la sua generalita il problema della riduzione della matematica alla logica.

10. La scoperta delle antinomie

Fu in questo contesto che egli fece ben presto (1902) una memorabile scoperta
destinata a influenzare profondamente la problematica e la tematica della logica e
della filosofia della matematica del nostro secolo. Lavorando su una delle grandi
intuizioni cantoriane, Russell scopri che il sistema generale di logica proposto da
Frege quale base della riduzione era in realta contraddittorio.

La “salda roccia” su cui, nelle intenzioni di Frege, doveva posare, finalmente sicura,
I'intera matematica, si sgretolava e la stessa prospettiva riduzionista, o, come da
qualche tempo si diceva, “logicista”, sembrava dissolversi nell’assurdo.

Russell, tuttavia, non si rassegno a questo fallimento. Convinto com’era della
sensatezza di fondo della prospettiva logicista, intraprese uno studio intenso e
approfondito alla ricerca delle radici piu riposte della sua antinomia e delle altre
analoghe contraddizioni che nel frattempo emergevano da ogni parte.

11. Il problema degli enti matematici

E proprio nel corso di questa ricerca che Russell entra decisamente in contatto con
un problema che, sebbene non ignorato dalla filosofia della matematica del secolo
precedente, era rimasto tuttavia ben lontano dall’aver rivelato quella ricchezza e
complessita di articolazioni che esso mostrera in questo secolo: il problema della
natura degli enti matematici.

Le indagini russelliane sulle antinomie e sui modi di eluderle rappresentano un
momento fondamentale nel processo di chiarificazione di questo problema; cio
non tanto per le esplicite osservazioni di Russell al riguardo, quanto piuttosto
perché, involgendosi nelle difficolta delle soluzioni al problema delle antinomie che



egli vagheggia, il grande logico inglese finisce con il far sempre pit chiaramente
emergere la possibilita, che sara peraltro sfruttata consapevolmente soltanto dagli
studiosi successivi, di costruzioni logico-matematiche alternative, legate a scelte e
posizioni filosofiche diverse circa la natura degli enti matematici.

12. Le definizioni impredicative

Cruciale e, in questo contesto, il momento in cui Russell, esaminando le varie
antinomie, si avvede del fatto che in ognuna di queste ¢ usato un procedimento
definitorio (che in base ad una proposta del grande matematico francese Henri
Poincaré (1854-1912) verra poi detto “impredicativo”) e che consiste nel definire
un ente facendo anche riferimento a delle totalita alle quali I’ente da definire
appartiene. Illustriamo brevemente il nucleo teorico della questione servendoci di
un discorso sui numeri naturali. Accettiamo, senza problematizzare questa ipotesi,
di disporre gia in un qualche modo dei numeri naturali che prendiamo come nostro
oggetto di studio. Consideriamo ora le due seguenti definizioni:

(a) il numero uno &, per definizione, 'unico numero naturale che, moltiplicato per
un qualsiasi numero, da come risultato quel numero;

(b) 'insieme dei numeri pari ¢, per definizione, 1'unico insieme che ¢ contenuto
in ogni insieme il quale: I) contenga il numero 2; II) se contiene un numero n
contiene anche il il numero n + 2.

Si tratta, in entrambi i casi, di definizioni in cui un ente - in (a) il numero uno, in
(b) I'insieme dei numeri pari - viene definito facendo riferimento a delle totalita
cui 'ente da definire appartiene: in (a) quella dei numeri naturali, o, meglio,
la totalita dei numeri che moltiplicati per ogni altro numero danno quest’altro
numero; in (b) la totalita degli insiemi di numeri naturali, o, meglio, la totalita
degli insiemi di numeri naturali che godono delle proprieta (I) e (II).

Orbene la (a) non & problematica. In base alla nostra ipotesi, infatti, noi disponi-
amo gia dei numeri naturali e dunque la (a) non avendo altro compito che quello
di isolare un certo numero puo tranquillamente servirsi di una totalita che e data
indipendentemente da essa. Ma che ne ¢ della (b)? Noi abbiamo accettato che
ci siano i numeri, non le loro proprieta o, se si preferisce, i loro insiemi. Questi
devono venir costituiti dalle nostre definizioni. Ma come faccio a costituire una
proprieta se, nel farlo, uso una totalita che gia la presuppone. Delle due I'una: o
I’avevo gia costituita prima, e allora la definizione potra magari anche essere lecita
ma non costituisce proprio un bel nulla, oppure non c’era, e allora la definizione
e del tutto vuota e priva di senso.

Accade ora che molte definizioni del tipo (b) risultino eliminabili, sostituibili cioe
con definizioni che non presentano problemi di questo genere; ¢ questo, in par-



ticolare, il caso della nostra che puo naturalmente venir sostituita dalla pacifica
definizione: 'insieme dei numeri pari contiene tutti e soli i multipli di due. Tale
possibilita non e pero generale; vi sono cioe definizioni del tipo (b) che, con tutta
la pit buona volonta del mondo, non si lasciano proprio eliminare.

13. Descrivere o costituire?

Le vie d’uscita sembrano essere solo due: o persevero nella mia idea che le proprieta
dei numeri sono il risultato di un atto costitutivo della mia attivita razionale, e
allora debbo abbandonare quel tipo di definizione perché in realta esso ¢ vuoto
(e anzi, pensa Russell, “vera” fonte di situazioni antinomiche); oppure rinuncio
a questa mia convinzione e mi rassegno all’idea che le proprieta dei numeri sono
in qualche modo date indipendentemente dalla mia attivita razionale, e allora
(trovata fra l’altro altrove la “vera” radice delle antinomie) posso senz’altro usare
quelle definizioni dato che esse, non dissimilmente da quelle, del tipo (a), hanno
ora soltanto la funzione di isolare, identificare qualcosa che gia c’e.

In questa contrapposizione emergente fra una concezione descrittiva e una con-
cezione costitutiva della Matematica, Russell si dibatté a lungo, pressato da una
parte dalla naturale insoddisfazione di dovere in qualche modo accettare un mondo
di idealita oggettive a noi esterno e di cui noi saremmo i pazienti “scopritori”, e non
meno premuto, dall’altra, dalla aspirazione a non sottoporre il patrimonio mate-
matico a quelle mutilazioni e restrizioni che conseguono al rifiuto delle definizioni
impredicative. Di passaggio notiamo che quelle restrizioni e mutilazioni che risul-
tano dal rifiuto delle definizioni impredicative apparivano a Russell, per una serie
di motivi che ci ¢ impossibile qui illustrare, assai pit gravi e profonde di quel
che esse non appaiano a noi che veniamo dopo oltre mezzo secolo di sviluppo e
approfondimento della questione

In questa “ambiguita” russelliana si colloca in particolare il tentativo del logico
inglese di soddisfare entrambe le esigenze attraverso 'aggiunta alla cosiddetta
“teoria ramificata dei tipi” (che mira a escludere le costruzioni impredicative) del
celeberrimo “assioma di riducibilita” che gli studiosi successivi hanno aspramente
criticato proprio in quanto tentativo di impossibile mediazione fra due posizioni
inconciliabili.

14. Il predicativismo

Il contrasto fra una concezione della matematica sostanzialmente descrittiva e
una precipuamente costitutiva, contrasto che nel seguito, rinverdendo una termi-
nologia illustre sara spesso discusso come contrasto fra una concezione “platoni-
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stica” della matematica e una concezione “concettualistica” della stessa, cosi come
esso emerge dalle posizioni russelliane e venne via via precisandosi e definendosi
nelle opere del tedesco Hermann Weyl (1885-1955), del polacco Leon Chwistek
(1884-1944), dellinglese Frank Plumpton Ramsey (1903-1930) e poi di molti al-
tri, non coinvolge, ¢ bene sottolinearlo, almeno in linea di principio, I'idea della
possibilita dell’attualita dell’infinito. In particolare, per questo concettualismo
(che verra in seguito meglio precisato come “concettualismo predicativista” o, pit
semplicemente, come “predicativismo”) € senz’altro accettabile la considerazione
della totalita degli enti costituibili attraverso un determinato processo. Di qui, in
particolare, ’accettazione da parte del predicativismo della totalita attualmente
infinita e in sé completa dei numeri naturali, in quanto totalita degli enti che si
possono generare a partire dallo zero attraverso il procedimento di passaggio al
successivo.

15. L’intuizionismo brouweriano

Assai piu radicale la posizione di quegli studiosi che si dicono “intuizionisti” o
“neo-intuizionisti”? e che, almeno per certi versi, assai meglio dei predicativisti si
possono considerare gli eredi diretti di coloro che, principalmente nel quadro gene-
rale della tematica riduzionista, rappresentarono nell’Ottocento il punto di vista
costitutivo nel contesto del problema delle entita matematiche (il piu significativo
fra questi fu, come gia ricordato, Leopold Kronecker, il “nemico” di Weierstrass
e di Cantor). Per questi intuizionisti, fra cui domina la figura dell’olandese Jan
Luitzen Egbertus Brouwer (1881-1966), I'idea di una totalita in sé conclusa dei
risultati di un processo generativo e priva di senso. Il processo e le sue possibilita
sono 1'unica cosa che c’e; dei suoi risultati si puo dire che sono infiniti soltanto nel
senso che, ad esempio, ogni punto eventualmente raggiunto puo essere superato.
L’infinita dei risultati e cioe solo potenziale, mai attuale.

Esistenza di un ente non puo significare sua eventuale possibilita, ma soltanto
sua avvenuta costituzione; ne consegue, in particolare, che dei due tipi di di-
mostrazione di esistenza correntemente usati in matematica:

(a) definizione di un ente e dimostrazione del fatto che 'ente definito gode della
proprieta richiesta (dimostrazione diretta);

(b) dimostrazione del fatto che se ogni ente non godesse della proprieta in que-
stione si arriverebbe a una contraddizione (dimostrazione indiretta);

solo la prima e accettata per buona, almeno nel senso che solo la prima e con-
siderata una dimostrazione di esistenza (la seconda puo anche essere interessante;

2Nella lettura: A. HEYTING, Disputa, si pud trovare una chiara enunciazione di alcuni tratti
essenziali della posizione intuizionista.
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non dimostra perd un’esistenza).

Se ne ricava che, in particolare, la stessa logica proposizionale, questo fondamento
“semplicissimo” della logica, € da rivedere. In particolare non puo essere accettata
quella legge che sta alla base della equivalenza delle due vie sopra ricordate per
una dimostrazione di esistenza e che € nota come “legge del terzo escluso”: per
ogni proposizione p, 0 p 0 non p.

La prospettiva rigorosamente costruttivista proposta e difesa da Brouwer e dai
suoi discepoli (il maggiore dei quali e senza dubbio l'olandese Arend Heyting
[n. 1898]), dopo un iniziale periodo di isolamento, dovuto, oltre che alla radicale
novita di certe sue impostazioni, anche a una certa forse eccessiva ambiguita e
oscurita terminologica, si e andata via via gradualmente affermando e, perdute
anche, almeno in parte, certe iniziali carica polemica e aspirazione esclusivistica,
e oggi al centro dell’attenzione di vasti settori della logica e della filosofia della
matematica.

16. La questione degli universali e la matematica

Concludiamo questo breve accenno alle tre grandi prospettive (platonismo, con-
cettualismo predicativista, intuizionismo) emerse sia pure in modi diversi, da
alcuni tratti presenti negli atteggiamenti anassiomatici e riduzionisti del secolo
scorso, sottolineando il fatto che tali prospettive non risultano essere soltanto delle
possibilita alternative offerte alla riflessione filosofica generale, ma si traducono
ben presto in proposte alternative sul piano stesso della riflessione matematica.
La matematica compatibile con una concezione circa la natura degli enti astratti
non ¢ in generale compatibile con un’altra. La nuova “disputa degli universali” ha
messo in luce implicazioni scientifiche e teoretiche che non potevano certo venire
immaginate in una situazione culturale in cui 'infinito matematico non aveva
particolare rilevanza.

Si noti peraltro che l'idea che le tre concezioni principali, rappresentando in
certo modo tre scalini successivi sulla via di un rafforzamento del concetto di
esistenza matematica, generino tre matematiche in graduale rapporto di muti-
lazione, e profondamente inadeguata. La cosa & particolarmente evidente nel caso
dell’intuizionismo dove, non appena si salga un po’ nella complessita delle teorie,
risulta possibile dimostrare proposizioni che sono false per il matematico platonico
(o come anche si dice, “classico”). L’analisi intuizionista, in particolare, ossia la
teoria intuizionista del continuo reale, non € un “pezzo” dell’analisi classica, bensi
un’altra cosa, diversa e anzi incompatibile con la prima. Cioo senza dire di altri
risultati, a prima vista stupefacenti, ottenuti dai sovietici A. N. Kolmogoroff e
V. Glivenko, dall’austriaco Kurt Godel etc., in base ai quali v’é un senso preciso
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in cui sono vaste parti della matematica classica a poter essere considerate come
“pezzi” delle corrispondenti teorie intuizioniste.

17. Assiomi e non-contraddizione

Riprendiamo ora in esame gli sviluppi in questo secolo dell’altro grande filone
ottocentesco, quello che approda alla rivoluzione assiomatica. Questo sviluppo &
indissolubilmente legato, nel Novecento, alla figura di David Hilbert. Gia ab-
biamo avuto modo di osservare che il problema della giustificazione degli as-
siomi che si era venuto ponendo di pari passo con il dissolversi della funzione
fondante della intuizione era andato via via precisandosi come problema della
non-contraddittorieta. La scoperta delle antinomie solleva la questione, prima in-
sospettata, della necessita di garantirsi non soltanto contro le contraddizioni che
possono annidarsi negli assiomi di una teoria, ma anche contro quelle che pos-
sono eventualmente venire introdotte dallo stesso apparato logico deduttivo. Ne
consegue il riconoscimento della necessita di una esplicitazione rigorosa di tutti i
“meccanismi” linguistici e logici attraverso cui si organizza la teoria. Cio spinge
gradualmente verso una formalizzazione completa delle teorie matematiche. La
formalizzazione di una teoria - a torto spesso confusa con quel suo vistoso ma in
fondo inessenziale aspetto che e la simbolizzazione - consiste nella esplicitazione
rigorosa del bagaglio inguistico ammesso (sia esso tratto dal “linguaggio naturale”
o costituito da “simboli”) e nella non meno rigorosa esplicitazione delle possibili
regole di combinazione e, pill in generale, manipolazione di questo bagaglio lingui-
stico, in modo tale che, in particolare, il concetto di forma espressiva ammissibile
e di dimostrazione di una forma espressiva ammissibile risultino completamente
determinati a prescindere da qualunque ricorso ai significati che si possano o si
vogliano associare a quei simboli. La non-contradditorieta di una teoria viene
ora identificata con la impossibilita di ottenere, per applicazione delle regole di
manipolazione ammesse, una dimostrazione che termina con una proposizione
congiunta con la sua negazione.

Giustificare una teoria vorra ora dire dimostrare la sua non-contraddittorieta.

18. Intuizione finitaria e intuizione infinitaria

Ma non si cadra in un circolo? Per giustificare una teoria, ossia per dimostrare
la sua non-contraddittorieta, non si dovra forse fare ricorso all’evidenza, alla
intuizione, a quelle cose, cioe, delle quali appunto dubitiamo e che ci hanno
spinto a cercare nella, non-contraddittorieta un sostituto alle loro troppo mal-
fide prestazioni?
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L’opinione di Hilbert e che, entro certi limiti, una siffatta circolarlta e inevitabile.
Con niente non si fa niente. La possibilita e la capacita di manovrare su sistemi
finiti di oggetti capendo quello che stiamo facendo ce le dobbiamo riconoscere.
Percio quelle teorie matematiche che ammettono modelli finiti possono venir di-
mostrate non-contraddittorie ostensivamente, manovrando cioe direttamente op-
portuni enti materiali o piu genericamente simbolici. Ma i veri problemi della
intuizione e della evidenza si collocano in rapporto a un altro tipo di teorie: quelle
che hanno soltanto modelli infiniti. Di questo genere sono, in particolare, quei tre
pilastri della matematica che sono la teoria dei numeri naturali, la teoria dei nu-
meri reali e la teoria degli insiemi. Qui 'intuizione alla quale si deve fare appello
per una giustificazione contenutistica delle loro asserzioni e di tipo assai diverso.
L’evidenza da conseguire e assai piu complessa di quella finitaria richiesta negli
altri casi e alla quale, come si e visto non possiamo rinunciare. Ma se noi rin-
unciamo, o non ci fidiamo, della intuizione infinitaria necessaria in questi nuovi
casi, siamo davvero impotenti di fronte al problema di trovare una dimostrazione
di non-contraddittorieta? No, sostiene Hilbert, perché la proprieta di essere non-
contraddittorio e una proprieta di certi sistemi simbolici. I simboli, le formule, le
dimostrazioni delle nostre teorie formalizzate sono oggetti “concreti”, finiti, le “re-
gole del gioco” sono prescrizioni di tipo finitario. Dunque, pensa Hilbert, la sola
intuizione finitaria sara impegnata nella dimostrazione del fatto che applicando
quelle regole non si riesce a generare una configurazione simbolica rappresentante
una contraddizione.

19. II programma hilbertiano

Le idee preaccennate si concretizzano nel “programma hilbertiano”?® per la fon-
dazione della matematica, che si lascia cosi schematicamente formulare:

(a) Tutte le teorie della matematica classica devono venir sostituite dalle loro ver-
sioni formalizzate. La “Matematica” e ora il complesso di questi sistemi formali;
(b) giustificare la matematica vuoi dire dimostrare la non-contraddittorieta della
“Matematica’;

(c) la non-contraddittorieta della “Matematica” viene dimostrata nella meta-
matematica la quale dispone di quegli strumenti logici e deduttivi che sono ammessi
nella matematica finitista, che ¢ quella parte della matematica che poggia sulla
intuizione finitaria.

3Le letture: J. HERBRAND, Introduzione alle ricerche sulla teoria della dimostrazione e J.
VON NEUMANN, La fondazione formalistica della matematica, espongono le idee fondamentali
del programma hilbertiano.
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Dato che la non-contraddittorieta della maggior parte dei sistemi formali matema-
tici si lascia finitisticamente ricondurre a quella delle tre grandi teorie dei naturali,
dei reali e degli insiemi, in Hilbert era presente I'idea che i veri nodi da sciogliere
fossero le dimostrazioni di non-contraddittorieta per questi tre sistemi formali.
Tenuto conto degli ovvii rapporti di forza fra i tre, poi, conveniva aggredire dap-
prima il problema della non-contraddittorieta per il sistema formale della teoria
dei numeri naturali. Una volta conseguito questo risultato, 1’intero bagaglio con-
cettuale e deduttivo di questa teoria si sarebbe trovato a possedere una giusti-
ficazione e avrebbe pertanto potuto venir aggiunto alla sfera metamatematica,
rendendo questa assai piu potente e capace di affrontare lo scalino successivo, e
cosl via.

Le idee hilbertiane trovarono subito entusiastica accoglienza da parte di alcuni
giovani studiosi, fra i quali vanno ricordati almeno lo svizzero Paul Bernays
(n. 1888), il tedesco Wilhelm Ackermann (1898-1962), l'ungherese Johann von
Neumann (1903-1957), una delle grandi figure della matematica del nostro secolo,
e il francese Jacques Herbrand (1908-1931). Alcuni importanti successi conse-
guiti negli anni venti contribuirono a consolidare la persuasione non soltanto della
sensatezza del programma hilbertiano, ma anche della sua relativamente rapida
realizzabilita.

20. Le scoperte di Godel

Come una vera e propria bomba agl quindi in questa atmosfera la conoscenza di
un risultato ottenuto nel 1931 dall’austriaco Kurt Gédel (n. 1906).

Nel 1928 Hilbert aveva sollevato la questione circa la completezza della teoria dei
numeri; aveva cioe domandato se i noti assiomi peaniani della teoria elementare
dei numeri fossero o meno in grado di dimostrare o di refutare ogni proposizione di
quella teoria. Godel dimostro non soltanto che cosi non era, ma anche che non era
possibile costruire un sistema di assiomi per la teoria dei numeri che godesse della
completezza richiesta da Hilbert. La teoria dei numeri non era cioe soltanto incom-
pleta, ma anche, in un senso ben definito, incompletabile. Malgrado la sua enorme
rilevanza questo risultato non basterebbe da solo a spiegare le parole da noi usate
in precedenza a proposito del lavoro di Godel. Il fatto e che dalla dimostrazione
di quel suo primo risultato Godel seppe trarre un corollario (il famoso teorema di
Godel sulla indimostrabilita della non-contraddittorieta di un sistema formale ca-
pace di formalizzare i mezzi ammessi per tale dimostrazione) da cui scendeva che il
programma hilbertiano, cosi come esso si era venuto configurando e precisando nel
corso degli anni venti, era per principio irrealizzabile; era, in particolare, impos-
sibile dimostrare con mezzi rigorosamente finitisti la non-contraddittorieta della

15



teoria elementare dei numeri*.

Le ripercussioni di questo lavoro di Godel furono immense. La sua ricchezza di
spunti logici, matematici e filosofici ¢ tale che esso puo giustamente venir preso
come un momento di svolta fondamentale nella storia del pensiero astratto; da
esso si dipartono alcune delle direttrici fondamentali della ricerca successiva.
Senza entrare in un discorso che sarebbe qui fuori luogo, ricordiamo che questo
lavoro ebbe, fra ’altro, un ruolo determinante nello sviluppo di quella problema-
tica che culmino intorno al 1936 nella costituzione di una definizione rigorosa
del concetto di operazione effettivamente esequibile, definizione che, per la sua
importanza e per la vastita delle conseguenze e delle indagini di cui fu l'inizio,
puo considerarsi come una delle conquiste piu significative della logica e della
filosofia della matematica di questo secolo.

21. GIli sviluppi della teoria della dimostrazione

Sembra invece opportuno soffermarsi un istante sulle conseguenze immediate avute
dal teorema di Godel sul programma hilbertiano. Forzando lievemente i termini, si
puo dire che Godel ha mostrato che I'idea hilbertiana di eludere, spostando il piano
di intervento da quello del contenuto a quello della forma, il sovraccarico infinitario
cui si trova esposta la intuizione nel momento giustificativo della matematica
classica, ha dei limiti; non e possibile, in generale, indebolire tale carico sino
a renderlo puramente finitario. Godel, si badi bene, non ha mostrato né che
I'idea di spostare dal contenuto alla forma il piano di intervento dell’intuizione sia
insensato (e che dunque sia necessario ritornare a una giustificazione contenutistica
o basata su certe ipotesi di carattere ontologico - platonismo - o fondata su una
evidenza, pit1 0 meno infinitaria si, ma controllata - intuizionismo, predicativismo
-), né che, per vie che noi oggi non riusciamo a immaginare, non possa un giorno
risultare possibile dare una giustificazione della matematica classica attraverso la
sola evidenza finitaria.

Egli ha “soltanto” mostrato che se giustificare vuoi dire provare la indimostrabilita
formale di una contraddizione, allora I’evidenza finitaria non basta.

Un grande passo in avanti nella chiarificazione stessa del significato del risultato
di Godel fu compiuto pochi anni dopo da un altro allievo di Hilbert, il tedesco
Gerhard Gentzen (1909-1945). Egli riusci infatti a rinvenire un principio logico
che, pur non essendo finitista, presenta tuttavia elevati caratteri di costruttivita
ed e, in particolare, intuizionisticamente del tutto pacifico, il quale ha questa
fondamentale proprieta: ammesso nella sfera metamatematica rende possibile la

4Una sintetica esposizione dei risultati di Godel si pud trovare nella lettura. K. GODEL,
Appendice agli atti del Congresso di Kdonigsbery.
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dimostrazione di non-contraddittorieta del sistema formale della teoria elementare
dei numeri. Questo grande risultato di Gentzen ¢ alla base di importanti sviluppi
che costituiscono la moderna, post-hilbertiana teoria della dimostrazione.

22. La semantica tarskiana

V’era pero una domanda che la particolare attenzione rivolta dalla scuola hilber-
tiana agli aspetti piu squisitamente deduttivi e formali della organizzazione as-
siomatica aveva potuto in qualche modo lasciare in ombra ma che non aveva
certo potuto sopprimere, tanto questa era essenzialmente connessa alle prospet-
tive piu generali dell’assiomatica cosl come essa era emersa dal lungo travaglio
dell’Ottocento.

Erano decenni che si andava ripetendo che le proposizioni della geometria non
pretendevano di parlare (o di parlare soltanto) dei punti e delle rette dello spazio
fisico, ma che enunciavano situazioni sussistenti in ogni possibile modello degli
assiomi; a Russell, che sosteneva di aver definito i numeri naturali, si obiettava
che, nella migliore delle ipotesi, era riuscito a costruire un modello, uno fra i tanti
possibili, per gli assiomi di Peano; a chi avanzava dubbi sulla consistenza della
geometria di Lobacewski si replicava che essa non era meno incerta di quella di
Euclide dato che in in quest’ultima, come avevano fatto vedere prima l’italiano
Eugenio Beltrami (1835-1900) e poi il tedesco Felix Klein, si poteva costruire un
modello per la prima.

Ecco, ma che cosa era esattamente un modello? Che cosa, in altre parole, si
intendeva esattamente dire con quel termine che pure veniva cosi largamente usato
e che tutti mostravano in pratica di saper capire e adoperare?

V’erano, certo, usi di quella parola che potevano venir soddisfacentemente pre-
cisati mediante ’apparato concettuale messo a disposizione dalla scuola hilber-
tiana. Cosl il discorso circa il rapporto geometria euclidea-geometria lobacewskia-
na si poteva per esempio precisare secondo le idee che qui schizziamo per il caso
della geometria piana: & possibile definire nel sistema formale della geometria
euclidea in corrispondenza a ogni concetto geometrico (punto, retta etc.) un
corrispondente concetto “secondo Lobacewski” (punto secondo Lobacewski, retta
secondo Lobacewski etc.) in modo tale che tutte le proposizioni che si otten-
gono dagli assiomi della geometria euclidea (eccezion fatta per 'assioma delle
parallele), sostituendo in essi i concetti euclidei con i corrispondenti concetti “se-
condo Lobacewski”, sono teoremi della geometria euclidea, e inoltre ¢ un teorema
della geometria euclidea la proposizione: per un “punto secondo Lobacewski” che
non “giaccia secondo Lobacewski” su una “retta secondo Lobacewski” “passa se-
condo Lobacewski” piu di una “parallela secondo Lobacewski” alla “retta secondo
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Lobacewski” data. Il concetto di modello si lasciava, cioe, in questo caso precisare
come traducibilita di un sistema formale in un altro. Non dissimile anche se piu
complicata era la situazione nel caso dei numeri naturali di Russell e degli assiomi
di Peano. C’erano pero altri, non meno importanti e frequenti usi del concetto di
modello per i quali una siffatta via non era adeguata.

Quando, per esempio, riprendendo un grande risultato di Dedekind, si affermava
che il sistema assiomatico di Peano caratterizzava i numeri naturali, in quanto
tutti i suoi modelli erano fra loro isomorfi, ossia possedevano la stessa struttura;
quando, come aveva scoperto Godel nel 1930, si enunciava il fondamentale risultato
che ogni teoria assiomatica elementare (ogni teoria, cioe, che non usi locuzioni
come: “tutte le proprieta”, “tutte le relazioni” etc.) se € non contraddittoria
nel senso di Hilbert, allora possiede un modello; o quando, ancora, si enunciava
quell’altro pilastro della conoscenza logica del nostro secolo, mostrato nel 1915 dal
tedesco Leopold Lowenheim (1878-1944) e poi generalizzato dal grande norvegese
Thoralf Skolem (1887- 1963), secondo il quale se una teoria elementare possiede
un modello, allora essa ne possiede anche uno sul sistema dei numeri naturali, si
stava usando un concetto di modello che non si lasciava semplicemente ricondurre
al problema di una traduzione di un sistema formale in un altro nel senso sopra
accennato, ma presupponeva una precisazione del rapporto che sussiste non fra
due linguaggi ma fra un linguaggio e un sistema di enti.

Che cosa fosse un sistema di enti si poteva ritenere di saperlo attraverso la teoria
degli insiemi; quel che bisognava precisare era il senso preciso della locuzione: il
tale sistema di enti soddisfa (o & un modello della) tale teoria. Tale problema fu
affrontato e risolto dal Polacco Alfred Tarski (n. 1902) attraverso la sua celebre
definizione del concetto di verita per i linguaggi formalizzati, definizione che ¢ alla
base di quella che negli anni trenta e quaranta fu chiamata la semantica e che
si e trovata poi ad essere largamente generalizzata ed estesa in quella che oggi si
chiama la teoria dei modelli, uno dei grandi rami della moderna indagine logica e
fondazionalistica®.

5Le idee della semantica tarskiana sono presentate nella lettura: A. TARSKI, Verita e di-
mostrazione. Malgrado questa lettura, per evidenti motivi di coerenza, si trovi collocata alla
fine del volume, tuttavia puo essere letta vantaggiosamente per prima. KEssa contiene infatti
un certo numero di informazioni di carattere metodologico generale che possono notevolmente
agevolare la comprensione degli altri testi.
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